Decoupled Space-Vector PWM Strategies for a Four-Level Asymmetrical Open-End Winding Induction Motor Drive With Waveform Symmetries


获取原文并翻译 | 示例


In this paper, two space-vector-based pulsewidth modulation (PWM) (SVPWM) strategies named equal- and proportional-duty SVPWMs are described, which are used to synthesize a four-level waveform from an open-end winding configuration of an induction motor. Two isolated dc-link voltages, which are in the ratio of 2 : 1, are employed to achieve this objective. Both of these PWM strategies achieve the avoidance of overcharging of the dc-link capacitor of an inverter operating with lower dc-link voltage by its counterpart with higher dc-link voltage. Implementation of these PWM strategies requires only the instantaneous three-phase reference voltages, eliminating the need of sector identification or lookup tables. The numbers of samples per cycle for individual inverters are selected in such a way that the quarter-wave, half-wave, and three-phase symmetries are achieved for the dual-inverter drive despite unequal dc-link voltages for the constituent inverters. It is also shown that one of the two PWM techniques, called the proportional-duty SVPWM, results in a better spectral performance and lower switching power loss in the overall dual-inverter system compared to the equal-duty SVPWM.


  • 论文查重
  • 论文收录引证报告
  • 文档翻译
  • 文档转换

联系方式:18141920177 (微信同号)


京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号